$$ {J(\theta) =\frac{1}{2m} [\sum^m_{i=1}(h_\theta(x^{(i)}) - y^{(i)})2 + \lambda\sum^n_{j=1}\theta^2_j} $$
\(sinx+siny=2sin\frac{x+y}{2}cos\frac{x-y}{2}\)
\(x^2 = \sqrt{y}\)
\(sin(90°-x)=\cosx
Trigonometry formula
Trigonometry formulas are used to solve problems based on the sides and angles of a right-angled triangle, using the different trigonometric identities. These formulas can be used to evaluate trigonometric ratios(also referred to as trigonometric functions), sin, cos, tan, csc, sec, and cot.
Trigonometrical Ratios
- \(sin(θ)=\frac{p}{h}\)
- \(cos(θ)=\frac{b}{h}\)
- \(tan(θ)=\frac{p}{b}\)
- \(cot(θ)=\frac{b}{p}\)
- \(sec(θ)=\frac{h}{b}\)
- cosec_=h/p
All trigonometry formula
- \(sin(90°-θ)=\cosθ\)
- \(cos(90°-θ)=\sinθ\)
- \(tan(90°-θ)=\cotθ\)
- \(cot(90°-θ)=\tanθ\)
- \(sec(90°-θ)=cosecθ\)
- \(cosec(90°-θ)=\secθ\)
- \(sin(90°+θ)=cosθ\)
- \(cos(90°+θ)=-\sinθ\)
- \(tan(90°+θ)=-\cotθ\)
- \(cot(90°+θ)=-\tanθ\)
- \(sec(90°+θ)=-cosecθ\)
- \(cosec(90°+θ)=secθ\)
- \(sin(180°-θ)=sinθ\)
- \(cos(180°-θ)=-\cosθ\)
- \(tan(180°-θ)=-\tanθ\)
- \(cot(180°-θ)=-\cotθ\)
- \(sec(180°-θ)=-\secθ\)
- \(cosec(180°-θ)=cosecθ\)
- \(sin(90°-)=\cosθ\)
- \(cos(90°-θ)=\sinθ\)
- \(tan(90°-θ)=\cotθ\)
- \(cot(90°-θ)=\tanθ\)
- \(sec(90°-θ)=cosecθ\)
- \(cosec(90°-θ)=secθ\)
- \(sin(A+B)=sinA.cosB+cosA.sinB\)
- \(sin(A-B)=sinA.cosB-cosA.sinB\)
- \(cos(A+B)=cosA.cosB-sinA.sinB\)
- \(cos(A-B)=cosA.cosB+sinA.sinB\)
- \(tan(A+B)=\frac{tanA+tanB}{1-tanA.tanB}\)
- \(tan(A-B)=\frac{tanA-tanB}{1+tanA.tanB}\)
- \(cot(A+B)=\frac{cotA.cotB-1}{cotB+cotA}\)
- \(cot(A-B)=\frac{cotA.cotB+1}{cotB-cotA}\)
\(θ=\) | sin | cos | tan | cot | sec | cosec |
---|---|---|---|---|---|---|
\(0°\) | \(0\) | \(1\) | \(0\) | \(∞\) | \(1\) | \(∞\) |
\(30°\) | \(\frac{1}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{\sqrt{3}}\) | \(\sqrt{3}\) | \(\frac{2}{\sqrt{3}}\) | \(2\) |
\(45°\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{1}{\sqrt{2}}\) | \(1\) | \(1\) | \(\sqrt{2}\) | \(\sqrt{2}\) |
\(60°\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{2}\) | \(\sqrt{3}\) | \(\frac{1}{\sqrt{3}}\) | \(2\) | \(\frac{2}{\sqrt{3}}\) |
\(90°\) | \(1\) | \(0\) | \(∞\) | \(0\) | \(∞\) | \(1\) |
\(120°\) | \(\frac{\sqrt{3}}{2}\) | \(-\frac{1}{2}\) | \(-\sqrt{3}\) | \(-\frac{1}{\sqrt{3}}\) | \(-2\) | \(\frac{2}{\sqrt{3}}\) |
\(135°\) | \(\frac{1}{\sqrt{2}}\) | \(-\frac{1}{\sqrt{2}}\) | \(1\) | \(-1\) | \(\sqrt{2}\) | \(\sqrt{2}\) |
\(150°\) | \(\frac{1}{2}\) | \(-\frac{\sqrt{3}}{2}\) | \(-\frac{1}{\sqrt{3}}\) | \(-\sqrt{3}\) | \(\frac{2}{\sqrt{3}}\) | \(2\) |
\(180°\) | \(0\) | \(-1\) | \(0\) | \(∞\) | \(-1\) | \(∞\) |
- \(θ) (θ) (θ) (θ) (θ) ()