Trigonometry formula

Trigonometry formula

(All Trigonometry Formula)

$$ {J(\theta) =\frac{1}{2m} [\sum^m_{i=1}(h_\theta(x^{(i)}) - y^{(i)})2 + \lambda\sum^n_{j=1}\theta^2_j} $$

\(sinx+siny=2sin\frac{x+y}{2}cos\frac{x-y}{2}\)

\(x^2 = \sqrt{y}\)

\(sin(90°-x)=\cosx

Trigonometry formula


Trigonometry formulas are used to solve problems based on the sides and angles of a right-angled triangle, using the different trigonometric identities. These formulas can be used to evaluate trigonometric ratios(also referred to as trigonometric functions), sin, cos, tan, csc, sec, and cot.

Trigonometrical Ratios

  1. \(sin(θ)=\frac{p}{h}\)
  2. \(cos(θ)=\frac{b}{h}\)
  3. \(tan(θ)=\frac{p}{b}\)
  4. \(cot(θ)=\frac{b}{p}\)
  5. \(sec(θ)=\frac{h}{b}\)
  6. cosec_=h/p

All trigonometry formula

  1. \(sin(90°-θ)=\cosθ\)
  2. \(cos(90°-θ)=\sinθ\)
  3. \(tan(90°-θ)=\cotθ\)
  4. \(cot(90°-θ)=\tanθ\)
  5. \(sec(90°-θ)=cosecθ\)
  6. \(cosec(90°-θ)=\secθ\)

  1. \(sin(90°+θ)=cosθ\)
  2. \(cos(90°+θ)=-\sinθ\)
  3. \(tan(90°+θ)=-\cotθ\)
  4. \(cot(90°+θ)=-\tanθ\)
  5. \(sec(90°+θ)=-cosecθ\)
  6. \(cosec(90°+θ)=secθ\)

  1. \(sin(180°-θ)=sinθ\)
  2. \(cos(180°-θ)=-\cosθ\)
  3. \(tan(180°-θ)=-\tanθ\)
  4. \(cot(180°-θ)=-\cotθ\)
  5. \(sec(180°-θ)=-\secθ\)
  6. \(cosec(180°-θ)=cosecθ\)

  1. \(sin(90°-)=\cosθ\)
  2. \(cos(90°-θ)=\sinθ\)
  3. \(tan(90°-θ)=\cotθ\)
  4. \(cot(90°-θ)=\tanθ\)
  5. \(sec(90°-θ)=cosecθ\)
  6. \(cosec(90°-θ)=secθ\)

  1. \(sin(A+B)=sinA.cosB+cosA.sinB\)
  2. \(sin(A-B)=sinA.cosB-cosA.sinB\)
  3. \(cos(A+B)=cosA.cosB-sinA.sinB\)
  4. \(cos(A-B)=cosA.cosB+sinA.sinB\)
  5. \(tan(A+B)=\frac{tanA+tanB}{1-tanA.tanB}\)
  6. \(tan(A-B)=\frac{tanA-tanB}{1+tanA.tanB}\)
  7. \(cot(A+B)=\frac{cotA.cotB-1}{cotB+cotA}\)
  8. \(cot(A-B)=\frac{cotA.cotB+1}{cotB-cotA}\)

\(θ=\) sin cos tan cot sec cosec
\(0°\) \(0\) \(1\) \(0\) \(∞\) \(1\) \(∞\)
\(30°\) \(\frac{1}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{3}}\) \(\sqrt{3}\) \(\frac{2}{\sqrt{3}}\) \(2\)
\(45°\) \(\frac{1}{\sqrt{2}}\) \(\frac{1}{\sqrt{2}}\) \(1\) \(1\) \(\sqrt{2}\) \(\sqrt{2}\)
\(60°\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{2}\) \(\sqrt{3}\) \(\frac{1}{\sqrt{3}}\) \(2\) \(\frac{2}{\sqrt{3}}\)
\(90°\) \(1\) \(0\) \(∞\) \(0\) \(∞\) \(1\)
\(120°\) \(\frac{\sqrt{3}}{2}\) \(-\frac{1}{2}\) \(-\sqrt{3}\) \(-\frac{1}{\sqrt{3}}\) \(-2\) \(\frac{2}{\sqrt{3}}\)
\(135°\) \(\frac{1}{\sqrt{2}}\) \(-\frac{1}{\sqrt{2}}\) \(1\) \(-1\) \(\sqrt{2}\) \(\sqrt{2}\)
\(150°\) \(\frac{1}{2}\) \(-\frac{\sqrt{3}}{2}\) \(-\frac{1}{\sqrt{3}}\) \(-\sqrt{3}\) \(\frac{2}{\sqrt{3}}\) \(2\)
\(180°\) \(0\) \(-1\) \(0\) \(∞\) \(-1\) \(∞\)
  1. \(θ) (θ) (θ) (θ) (θ) ()
Previous Post Next Post